Continuous Group Actions on Profinite Spaces
نویسنده
چکیده
For a profinite group, we construct a model structure on profinite spaces with a continuous action. We construct descent spectral sequences for the homotopy groups of the homotopy fixed point space and for the homology of homotopy orbit space which are strongly convergent for an arbitrary profinite group. Our main example is the Galois action on profinite étale topological types of schemes over a field.
منابع مشابه
Additive and unstable algebra structures for the MU-cohomology of profinite
Let (MUn)n denote the Ω-spectra representing the cobordism cohomology theory. The coefficient ring MU∗ is the polynomial algebra over Z generated by elements xk of degree 2k, k ≥ 1. As we will consider spaces like map(CP,MUn) which already has infinite mod p cohomology group in each degree, we will use profinite completion and continuous cohomology. So we fix a prime number p and let Ŝ, respect...
متن کاملSome remarks on profinite completion of spaces
We study profinite completion of spaces in the model category of profinite spaces and construct a rigidification of the completion functors of Artin-Mazur and Sullivan which extends also to non-connected spaces. Another new aspect is an equivariant profinite completion functor and equivariant fibrant replacement functor for a profinite group acting on a space. This is crucial for applications w...
متن کاملProfinite Homotopy Theory
We construct a model structure on simplicial profinite sets such that the homotopy groups carry a natural profinite structure. This yields a rigid profinite completion functor for spaces and pro-spaces. One motivation is the étale homotopy theory of schemes in which higher profinite étale homotopy groups fit well with the étale fundamental group which is always profinite. We show that the profi...
متن کاملAlgebraic Families of Galois Representations and Potentially Semi-stable Pseudodeformation Rings
We construct and study the moduli of continuous representations of a profinite group with integral p-adic coefficients. We present this moduli space over the moduli space of continuous pseudorepresentations and show that this morphism is algebraizable. When this profinite group is the absolute Galois group of a p-adic local field, we show that these moduli spaces admit Zariski-closed loci cutti...
متن کاملFinitely approximable groups and actions Part I: The Ribes - Zaluesskiĭ property
We investigate extensions of S. Solecki’s theorem on closing off finite partial isometries of metric spaces [11] and obtain the following exact equivalence: any action of a discrete group Γ by isometries of a metric space is finitely approximable if and only if any product of finitely generated subgroups of Γ is closed in the profinite topology on Γ. §
متن کامل